
IoT Secure SDLC

V. 1-2023

Strengthen
Security

In this whitepaper we will discuss how you can develop
and maintain IoT products and services, to best shield
them and your customers from security incidents, while
conforming to the European Cyber Resilience Act in its
current draft status.

Although the software is the biggest portion of an IoT
product and its infrastructure and thus the most prone
to security issues, the software ‘lives’ within electronics.
Without hardware no software and thus no IoT.

It is during the requirements specification phase, when hardware and software specifications
must be carefully orchestrated to ensure maximum overall security. A device that stores critical
or private data, or a device that can be updated over-the-air most likely will use a cryptograph-
ical algorithm with a private key to ensure data safety, integrity and security. The key therefore
may not be exposed. Although one can use an isolated section of non-volatile memory to store
this key, the most secure way is to implement a Trusted Platform Module (TPM) in the hardware
to create a Root of Trust or Chain of trust between hardware and software.

Therefore, in a well-balanced secure development process, the security requirements for the
software are matched with the security requirements of the hardware. From then on, hardware
and software development processes branch off and come together again later in the develop-
ment cycle.

Securing IoT
In this paper, we will focus on the Software Branch of the Life Cycle within the IoT ecosystem.
Securing IoT in itself implies that the entire ecosystem needs to be secure. So end-devices,
gateways, cloud backend, apps are all involved as independent systems. From a software point
of view, all parts in all systems need to be developed in a secure way, from the firmware, RTOS,
communication stacks and application in end-devices to cloud services and software imple-
mentations, network protocols etc. No doubt that this a complex task especially since the SDLC
consists of different phases and in order to maintain maximum security needs a specific securi-
ty aware implementation in every phase.

In the next sections, we will look at the different SDLC phases and their security considerations.

Secure SDLC

It is precisely in the requirements phase where security
considerations are essential; The requirements are the
basis of the specifications for the design, development,
maintenance and deployment. Security therefore must be
embedded in the requirements throughout.

Besides that, personnel training and establishment of
clear and well-defined processes is beneficial in meeting
certain cases of requirements for legal or regulatory
purposes.

Security considerations
• Password change policies for (end-)users
• Recovery planning
• Update policy
• Cost, benefit and risk analysis
• Third party dependencies
• Security standards
• Certification objectives
• Potential IoT threats
• IoT attack vectors

In respect to security, the software requirements consist out of a part related to the context
and a part related to functionality.

Requirements must remain consistent and a mechanism must be in place to regularly check
them against on-going modification. There are several techniques available in respect to secu-
rity such as quality gateways and bug bars. The former is a way of checking the requirements
for completeness and correctness whereas the latter puts thresholds on the vulnerabilities.

Threat Modelling
Risk analysis of the assets as well as their internal and external interactions and dependen-
cies, together with threat modelling that charts structural vulnerabilities are other areas of fo-
cus. Threat modeling starts in the requirements phase and works through to the design phase.

Given the nature of IoT ecosystems, requirements are no longer static documents. As ecosys-
tems adapt to new capabilities, exchangeability with new and legacy systems can create po-
tential vulnerabilities ruled out at the beginning. It is inevitable that requirements change over
time and special care must be taken to regularly iterate them in the light of security.

1.
Requirements

The Software Design phase is the translation of the require-
ments into a set of documents and drawings with system
specifications. Basically they lay-out how the device or
application will work.

The functional aspect of the design used to be the primary
goal, but today a risk-based approach should be leading to
ensure security throughout the design.

2.
Software Design

The threat model developed in the requirements phase together with an analysis of the areas
of potential attack helps in ruling out potential security breaches.

In this phase a proper strategy for a chain of trust, recovery plan and the integration of secu-
rity mechanisms are crucial for an effective sustain or maintenance cycle once the product is
released.

A security Architectural design leans on the CIA triad (Confidentiality, Integrity and
Availability), taking into account aspects like access control, policy configuration and security
lifecycle. It is this part of the design that is particularly vulnerable to security leaks as it needs
to detail the security privileges of all devices, services and applications that have some sort of
interaction.

The classical way of translating specifications to
functioning code with the edit-compile-debug stigma no
longer works for security centric software development
without specific secure coding guidelines or programming
standards.

Source code must be structured, readable, transferable,
maintainable yet optimized to a certain level and free of
vulnerabilities. Development of secure software relies on (in-
dustry) coding standards to provide security by design code
from the beginning.

3.
Development

In today’s development setup with continuous integration prac-
tices, the software development process continuous in parallel to
testing activities. Because of this dynamic environment, automat-
ed tools such as Static code Analysis tools aid in the detection of
security issues.

On a higher level Static Application Security Testing (SAST) tools
can automate the security processes and eliminate application
level vulnerabilities.

Special care must be taken when consuming third par-
ty or Open Source components. In many cases these
are treated as black boxes, but in a security centric envi-
ronment, they should be tested and checked for known
vulnerabilities before integration in the IoT system.

It may be a no-brainer that the development process must be organized in a way that every
new version of the software is less vulnerable than the previous. Version Control Systems,
secure bootstrap are some of the methods to aid in achieving these goals.

Where in the past, testing was mostly done on a
(sub)system level specifically to validate functional
implementation, when we speak in terms of security, new
dimensions have entered the equation. When developing
test specifications for secure IoT, the risk and threat
analysis of the entire IoT ecosystem must be considered,
including their interfaces, dependencies and data flows.

4.
Testing

Full functional test
It is not impossible, but extremely difficult to perform a full
functional system test on an entire IoT ecosystem all at once,
so the security testing strategy needs to identify all relevant
elements in the system and specify how each element and
sub-element can be best tested.

There are many test strategies to choose from but it is import-
ant that Testing and Checking is done as early as possible in
the SDLC. As an example consider an IoT device based on a
main stream Linux kernel any many open source libraries. The
kernel version is specified and based on that all necessary
Software Composition Analysis
A software composition analysis tool can be used to check if any of the packages contain
known vulnerabilities and offer manual or automated remediation to eliminate them before
any further development or testing is done. When coding has started, manual or automated
testing with static or dynamic code analysis help to validate functionality against the require-
ments and check for any unwanted of vulnerable behavior. and peer review.

Peer Source Code Review
As (system) complexity and interdependency grow, a peer source code review, although time
and resource consuming, might be a necessary activity to enhance overall system securi-
ty. Human intervention in testing will remain a decisive factor as long as automated tools
continue to generate large numbers of false positives. It is here, where automated testing is
preferred because of their efficiency, consistency and inherited testing documentation.

5.
Deployment &

Integration

The deployment phase in an IoT environment requires a solid bug tracking and change
management system to safeguard that any deployment of new firmware or software on any
level keeps its operability with the rest of the ecosystem and does not introduce vulnerabilities.
In many cases, deployment may not be limited to just end devices, but may also involve back
end or third party systems making the deployment steps complicated. Deployment therefore is
an activity that needs to be carefully communicated and scheduled both with internal as well
as external stakeholders.

There are several documented deployment strategies and depending on the type of application,
number of users or installed devices, the age or maturity of the ecosystem, one must carefully
select the strategy best suited, and this should be done early in the design phase.

Often called the last phase of IoT SDLC, but not the least
important one. Once deployed, the software needs mainte-
nance to ensure availability, stability and functionality.

From a security perspective, this is the phase where the
entire ecosystem needs to be monitored for threats and
disruptions. Key in this phase is the implementation of a
vulnerability assessment and penetration test strategy as
well as back up and redundancy schemas for operational
and security fall-back scenarios.

Other tasks during the maintenance phase include: software
update management, regulatory compliance and secure
software and device disposal. The latter entails the mech-
anisms to ensure that all data, access and authentication
information is deleted in a secure way when end-point
devices, gateways, servers, discs etc are taken out of
service.

6.
Maintenance

Security is a fundamental principle across all phases in the
IoT SDLC. It is crucial to have a good documentation man-
agement system that supports the SDLC process for trace-
ability, monitoring and auditing.

Documentation that finds its origin in well defined security
requirements carried forward through the IoT Design, Imple-
mentation, Testing, Deployment and finally the Maintenance
phase.

Each phase has its own set of tools, processes and
procedures in aid of achieving the security requirements.
Setting up and maintaining a suitable Secure SDLC in itself is
very complex.

Conclusion
&

Recommendations

Our recommendations are to:
• Make use of tools wherever possible to ease document generation and overall traceability
• Start implementing security measures early in SDLC
• Adhere to common industry standards for software coding
• Automate repetitive processes such as testing for maximum consistency
• Use special software components for secure and reliable device data management

Tools

These tools are our recommendation when you want to
strengthen security within your company.

Keep your company and your customers safe with tools for
security by design, certification & testing.

There’s
always
a Logic

 solution

Certification & Traceability
Managing software requirements using informal business tools
like spreadsheets might work for a while, but even for smaller
projects and project teams, managing the impact of changes
throughout the entire life cycle can be difficult.

LDRA has been a trusted supplier of Logic Technology for over
10 years. Their tool suite’s open and extensible architecture inte-
grates software life-cycle traceability, static and dynamic analysis,
unit test and system-level testing on virtually any host or
target platform.

Request a free trial

Application Lifecycle Management
ALM, or Application Lifecycle Management, is designed for man-
aging the entire lifecycle of an application, from initial design to
retirement. From better quality, to a faster time-to-market, ALM
provides a comprehensive framework for managing a secure
design.

Our supplier Kovair offers state of the art ALM tooling, which inte-
grates with all existing software.

Request a live demo

Secure File Systems | Encryption
File system solutions are carefully engineered to protect critical
system and user data from corruption where power loss may
occur. Tuxera has been our partner for years with their Reliance
Edge, Reliance Nitro and Reliance Sense solutions.

Contact us for your free trial

https://www.logic.nl/about/
https://www.logic.nl/about/
https://email.logic.nl/ct/m6/k1/eCmqyEuaDRR4L_eJZQdhJYF0wnc047HOHF9mKLwmCh8ywxGBMK3UGpgkd7Yx3hXV/8yisC24fgPyiknB
https://www.logic.nl/brands/kovair-software/
https://www.kovair.com/request-live-demo/
https://www.logic.nl/file-systems/
https://www.logic.nl/file-systems/
https://email.logic.nl/ct/m6/k1/eCmqyEuaDRR4L_eJZQdhJYF0wnc047HOHF9mKLwmCh8ywxGBMK3UGpgkd7Yx3hXV/8yisC24fgPyiknB

Wondering how to integrate security measures and tooling
within your product or company?

Schedule a call with a product matter expert to have 30 years of
product development knowledge by your side.

Let’s get started!

There’s
always
a Logic

 solution

Open Source Software Composition Analysis
Open source components have become an integral part of today’s
software development processes. SCA tools automatically detect
the open source components in your applications and help you
manage the different aspects related to your open source usage.
Mend is our partner for open source management. Their solution
Mend.io SCA is the gold standard in open source security.

Read more on managing open source software

Secure Databases

A database management system provides provides protection
and security to a database. In the case of multiple users, it also
maintains data consistency.

If you’re talking databases, we say there’s no one better than
McObject. eXtremeDB is an extremely fast and reliable database
management system.

Read more on secure databases

Trusted Platform Module (TPM)
The use of a TPM is an important first step within your prod-
uct design. By using a solution by our partner Insyde, called
InsydeH2O, you get acces to a the industry’s most trusted UEFI
BIOS.

Discover Insyde H2O

https://www.logic.nl/contact/
https://www.logic.nl/about/
https://www.logic.nl/about/
https://www.logic.nl/composition-analysis/open-source-software-composition/
https://www.logic.nl/composition-analysis/open-source-software-composition/
https://www.logic.nl/databases/
https://www.logic.nl/databases/
https://www.logic.nl/bios-uefi-bootloaders/insydeh2o/
https://www.logic.nl/bios-uefi-bootloaders/insydeh2o/

