
Logic Technology
2024Logic Technology

2024

Table of contents
1. Introduction to embedded Systems Security 1

2. 	 Secure	development	life	cycle	for	embedded	systems	 3

3. Secure development practices

4. Building a secure foundation 6

5. Protecting data in embedded systems 8

6. Securing communication interfaces 10

7. Secure device provisioning and manufacturing 13

8. Secure system deployment 14

9. Security testing and evaluation 15

10. Incident response and security incident management 18

11. Best practices in embedded systems security 19

12. Future trends and emerging technologies 21

13. Conclusion and next steps 23

4

1. Introduction to
embedded systems security

1.1 Embedded devices vs. embedded ecosystems

1.2 Responsibilities in embedded system security

Embedded systems can be explained in different contexts.

Embedded System as a Standalone Device - Connected to the Internet
• An independent device with its own dedicated function.
• Can connect to the internet for data exchange and remote control.
• Examples: smart thermostat, security camera, wearable fitness tracker.

Embedded System as a Device
• A small component within a larger system.
• Works in conjunction with other components to achieve a common goal.
• Examples: car engine control unit, printer controller, medical imaging device.

Embedded System as an Ecosystem
• A network of interconnected embedded devices.
• Devices communicate and share data to create a more intelligent and efficient system.
• Examples: smart home, smart city, industrial automation.

Attributing sole responsibility in a product development team isn't easy; it's a collaborative effort. However,
some roles carry a higher level of accountability. The product manager is often seen as accountable for
the product’s success as they steer the vision, represent the customer's voice, and ensure the project stays
on track. But embedded systems security is such a critical element that all the people involved in product
development, should have a security first mindset.

1.3 The importance of embedded systems security
Embedded systems security is vital to protect end users and organisations
against numerous threats. With the increasing number of cyberattacks
targeting embedded systems, ensuring the security of these systems has
become more crucial than ever before.

One of the main reasons embedded systems are vulnerable to security
threats is their limited resources. Embedded systems are typically con-
strained by factors such as power consumption, memory and processing
capabilities. As a result, implementing robust security measures becomes a
challenge. However, overlooking security can have severe consequences, as
even a single vulnerability in one embedded device can be exploited to com-
promise the entire network or ecosystem.

A security breach in embedded systems can have significant financial impli-
cations. Additionally, in critical sectors like healthcare and aerospace, com-
promised embedded systems can pose a threat to human safety.

To address these concerns, product development teams must prioritize em-
bedded systems security throughout the development lifecycle. This involves
adopting a proactive approach, starting from the system design phase and
extending to testing, deployment, and post-deployment maintenance.

Moreover, regular security audits, vulnerability assessments, and software
updates are essential to keep up with evolving security threats.

1

4.1 Common security threats in embedded systems
As technology continues to advance, embedded systems have become an integral part of our daily lives.
From smart appliances to medical devices and automotive systems, these embedded systems play a cru-
cial role in enhancing functionality and convenience. However, with increasing connectivity and intercom-
munication, the security of these systems has become a significant concern.

One of the most prevalent security threats in embedded systems is unauthorized access. As these systems
are often connected to the internet or other networks, they become vulnerable to hackers who may attempt
to gain unauthorized access to sensitive data or control the system or device for malicious purposes. Prod-
uct development teams must implement authentication and encryption mechanisms to prevent unautho-
rized access and protect the integrity of the system.

Another significant security threat is software vulnerabilities. Embedded systems often rely on complex
(open source) software components that may contain bugs or vulnerabilities. These vulnerabilities can be
exploited by hackers to gain control over the system or execute malicious code. It is crucial for product de-
velopment teams to conduct thorough security testing and implement secure coding practices to minimize
the risk of software vulnerabilities. When open source software components are included in the embedded
application, it is important to implement automated mechanisms to check for known vulnerabilities and
fixes.

Physical tampering is yet another security threat that cannot be overlooked. Embedded systems are often
deployed in environments that are accessible to potential attackers. Tampering with the system’s hardware
or its connections can compromise security and functionality. Product development teams should consider
implementing tamper-evident designs, such as physical seals or intrusion detection mechanisms, to detect
and respond to physical tampering attempts.

Lastly, supply chain attacks are becoming increasingly common in the embedded systems domain. Attack-
ers may compromise the integrity of the system during its production or distribution phase, potentially intro-
ducing malicious components or tampering with the system’s firmware. Establishing secure supply chain
practices and conducting regular audits can ensure the integrity of the components and firmware.

2

2. Secure development life cycle
for embedded systems

2.1 Overview of the Secure Development Life Cycle
The secure development life cycle (SDLC) is a necessary enhancement of the conventional product De-
velopment Life Cycle that modern development teams must follow to ensure the security of embedded
systems. In today’s interconnected world, where embedded systems are increasingly vulnerable to cyber
threats, it is essential for product development teams to adopt a proactive approach towards security.
By understanding the SDLC, product development teams can implement and maintain effective security
measures right from the early stages of development, reducing risks and vulnerabilities.

The SDLC consists of several interconnected stages, each serving a specific purpose in ensuring the secu-
rity of embedded systems. These stages include requirements analysis, design, implementation, testing,
deployment, and maintenance. Each stage incorporates security considerations and practices that help
identify and mitigate potential vulnerabilities.

Requirements
During the requirements analysis stage, the security requirements and goals of the embedded system are
defined. This includes identifying potential threats and risks, as well as determining the necessary security
measures to be implemented.

Design
In the design stage, security principles and best practices are applied to create a secure architecture for
the embedded system. This involves ensuring that secure communication protocols, access controls, and
encryption techniques will be properly implemented.

Implementation
The implementation stage involves writing the code for the embedded system, following secure coding
practices and guidelines. This stage emphasizes the importance of secure coding and the use of secure
libraries and frameworks to minimize the risk of vulnerabilities.

Testing
Testing plays a crucial role in the SDLC by identifying and eliminating security flaws in the embedded sys-
tem. This includes conducting vulnerability assessments, penetration testing, and code review to ensure all
security measures are functioning as intended.

Deployment
The deployment stage involves securely installing the embedded system, following secure configuration
practices, and ensuring proper authentication and access controls are in place.

Maintenance
Finally, the maintenance stage focuses on continuous monitoring, patch management, and updating of the
embedded system to address emerging security threats and vulnerabilities.

In conclusion, the SDLC is a vital framework for product development teams to ensure the security of
embedded systems. By understanding and implementing the SDLC stages, they can effectively safeguard
embedded systems from potential cyber threats, protecting the integrity, confidentiality, and availability of
these systems.

3

3. Secure development practices
3.1 Integrating security into development processes
It is evident to companies need to adopt a proactive approach to security.
Rather than merely reacting to threats, teams should anticipate and plan for
potential vulnerabilities throughout the development process. This includes
conducting a comprehensive risk assessment early on, identifying potential
attack vectors, and developing mitigation strategies.

One effective way to integrate security is by incorporating secure coding prac-
tices. This involves following industry best practices, such as input validation,
secure memory management, and proper error handling. Additionally, imple-
menting coding standards and guidelines can help ensure consistency and
reduce the likelihood of introducing vulnerabilities.

3.2 Secure coding standards and guidelines
Secure coding standards and guidelines provide a framework for developing robust and resilient embedded
systems. They help teams in designing, implementing, and testing software that is resistant to
vulnerabilities and exploits. By adhering to these standards, many of them are established and industry
specific, development teams can significantly reduce the risk of security breaches and enhance the overall
security posture of their systems.

One important aspect of secure coding standards is the prevention of common programming errors and
vulnerabilities. These standards emphasize the use of secure coding such as input validation, proper mem-
ory management, and error handling. By following these guidelines, developers can minimize the risk of
buffer overflows, injection attacks, and other common security weaknesses.
Secure coding standards also address the secure handling of sensitive data. Encryption, access control,
and secure communication protocols are examples of guidelines that ensure the protection of data at rest
and in transit.

Implementing secure coding standards requires extensive collaboration and communication within the
product development team. Developers, architects, and security professionals must work together to define
and enforce these standards effectively. Regular training and awareness programs should also be
conducted to keep the team updated with the latest security best practices and emerging threats.

Another important aspect is secure design principles. By incorporating security into the system architec-
ture, teams can minimize the potential attack surface and create a more resilient system. This includes
implementing strong access controls, secure communication protocols, and secure boot mechanisms.

Furthermore, continuous testing and validation are vital to ensure the security of embedded systems. This
involves conducting regular security assessments, penetration testing, and code reviews to identify and
address vulnerabilities throughout the development lifecycle. Additionally, integrating automated security
testing tools can streamline the process and help detect potential issues early on.

By integrating security into the development processes, product development teams can build robust and
secure embedded systems.

4

3.3 Static and dynamic code analysis
Static code analysis involves special tools examining the source code of an embedded system without
executing it. This analysis technique helps identify potential vulnerabilities and weaknesses in the code-
base early in the development process. Static, code analysis detects common programming errors, such as
buffer overflows, input validation issues, and memory leaks. This method of analysis is highly effective in
finding security flaws that might otherwise go unnoticed until a system is deployed.

On the other hand, dynamic code analysis focuses on evaluating the behaviour of the code while it is
running. By monitoring the system’s execution, special dynamic code analyser tools can identify runtime
vulnerabilities, such as race conditions, code injection, and unauthorized access attempts.

Both static and dynamic code analysis complement each other and significantly enhance the security of
embedded systems. While static analysis catches vulnerabilities early on in the coding process, dynamic
analysis ensures that the system remains secure during runtime. By combining these two techniques, prod-
uct development teams can establish a robust security framework that effectively prevents and mitigates
potential threats to their embedded systems.

To implement static and dynamic code analysis effectively, development teams should utilize specialized
tools and frameworks. These tools automate the analysis process and generate comprehensive reports.
Additionally, these tools often integrate with existing development workflows, ensuring that security analy-
sis becomes an integral part of the development cycle.

By adopting static and dynamic code analysis as an integral part of the software development process,
product development teams can significantly reduce the risk of runtime errors and security breaches and
enhance the overall security posture of their embedded systems. This proactive approach to security not
only protects the end-users but also contributes to a reputation of trust for the organization. Therefore, it is
crucial to prioritize the integration of static and dynamic code analysis into the development processes.

3.4 Secure code reviews
Code reviews are becoming a required practice in software development, and they become even more criti-
cal when it comes to securing embedded systems. They involve a systematic examination of the codebase
to identify potential security flaws, design weaknesses, and implementation errors. By conducting thorough
code reviews, teams can detect and rectify vulnerabilities early in the development process, reducing the
likelihood of security breaches.

When performing code reviews for securing embedded systems, the focus should be on key security
aspects such as authentication, authorization, input validation, and data protection. The review process
should encompass both high-level architectural designs and low-level code implementation to ensure com-
prehensive coverage. Additionally, code reviews should consider potential attack vectors specific to embed-
ded systems, such as physical access, firmware updates, and communication protocols.

3.5 Testing
Alongside code reviews, rigorous testing is indispensable for securing embedded systems. Testing method-
ologies should encompass both functional and security testing. Functional testing ensures that the sys-
tem performs as intended per the requirements, while security testing aims to uncover vulnerabilities and
weaknesses as per the security requirements. Security testing can include techniques such as penetration
testing, fuzzing, and static code analysis.

Penetration testing involves simulating real-world attacks to evaluate the system's resistance to threats.
Fuzzing, on the other hand, involves inputting malformed or unexpected data to discover vulnerabilities.
Static code analysis tools analyse the source code without executing it, identifying potential security flaws
and providing suggestions for improvements.

Incorporating automated testing tools and frameworks into the development process contributes to the effi-
ciency and effectiveness of security testing. These tools can help identify common vulnerabilities, enforce
coding guidelines, and provide real-time feedback to developers. Continuous integration and continuous
deployment practices can further streamline the testing process, ensuring that any security issues are
promptly addressed.

5

4. Building a secure foundation
4.1 Secure element integration
With the increasing number of cyber threats and attacks, implementing robust security measures to protect
sensitive data and ensure the integrity of embedded systems has become more important. One effective
approach to achieving this is through the integration of secure elements.

Secure elements are hardware-based security solutions designed to safeguard sensitive information and
cryptographic keys. These tamper-resistant components provide a high level of protection against various
attacks, including unauthorized access, tampering, and reverse engineering. By integrating secure elements
into embedded systems, development teams can significantly enhance the security posture of their devices
and establish a solid foundation for trusted operations.

The integration process involves carefully designing and implementing secure element functionality within
the embedded system architecture. This entails selecting the appropriate secure element technology, such
as trusted platform modules (TPMs), secure microcontrollers or secure cryptographic chips, based on the
specific security requirements of the product.

During integration, teams need to consider several key aspects to ensure the effectiveness of secure ele-
ment integration. Firstly, the secure element must be seamlessly integrated into the overall system design,
taking into account the communication protocols and interfaces required for secure interaction with other
components. This requires a comprehensive understanding of the system’s architecture and careful consid-
eration of the secure element’s capabilities and limitations.

Secondly, secure element integration involves implementing secure boot mechanisms to ensure the integ-
rity of the system’s firmware and software. This includes securely storing and verifying cryptographic keys
during the boot process, as well as establishing a chain of trust to prevent unauthorized modifications to
the system’s code.

Furthermore, secure element integration also entails the implementation of secure communication proto-
cols and cryptographic algorithms to protect data transmission and storage. This includes utilizing encryp-
tion, digital signatures and secure key exchange mechanisms.

By integrating secure elements into embedded systems, product development teams can significantly
enhance the security of their products. Secure elements provide a strong defence against a wide range
of attacks, making it extremely difficult for malicious actors to compromise sensitive data or tamper with
system functionality.

6

4.2	Secure	boot	and	secure	firmware	updates
Secure boot is a security feature that protects the integrity of the system's bootloader and ensures that only
trusted software is executed during the boot process. By verifying the digital signature of the bootloader
and subsequent software components, secure boot prevents the execution of unauthorized or tampered
code. It is one of the implementations of a Secure Element Integration.

To implement secure boot, it is essential to have a root of trust (RoT) in the system. The RoT is a hardware
or software component that securely stores cryptographic keys and performs the verification process. It es-
tablishes a chain of trust, starting from the RoT itself and extending to each subsequent component in the
boot process. The RoT ensures that only properly signed and authenticated software is loaded, providing a
strong foundation for system security. It’s evident that a RoT based on a hardware component provides the
strongest method for storing the cryptographic keys.

As part of the development process, it is essential to carefully select and integrate a RoT into the embed-
ded system design. Additionally, the team must establish and enforce secure boot policies, ensuring that
only pre-validated firmware is executed. Regularly updating the RoT's cryptographic keys and maintaining a
secure update mechanism are also critical to maintaining the security of the system throughout its lifecy-
cle.

Secure firmware updates are another crucial aspect of securing embedded systems. As vulnerabilities
are discovered and security threats evolve, it is imperative to have a reliable mechanism for updating and
patching the firmware. Secure firmware updates ensure that the system remains protected against emerg-
ing threats and vulnerabilities, reducing the risk of exploitation.

Implementing secure firmware updates involves establishing a secure communication channel between the
update server and the target device. This channel must employ strong encryption and authentication mech-
anisms to prevent unauthorized access and tampering. Additionally, the firmware update process should
include a verification step to ensure the integrity and authenticity of the newly installed firmware.
By implementing secure boot and secure firmware updates, development teams can significantly enhance
the security of embedded systems. They provide a solid foundation for building secure and trustworthy em-
bedded systems, boosting customer confidence and ensuring the integrity and reliability of your products.

4.3 Secure debugging techniques
Debugging is an essential part of the software development lifecycle process. Besides functional error
correction it is a crucial step that helps identify and fix vulnerabilities in the system. However, traditional
debugging methods may pose security risks if not implemented correctly.

A primary concern during (remote) debugging is the potential exposure of sensitive information. When
debugging, revealing critical data such as encryption keys, passwords or any other confidential information,
must be avoided. To address this issue, developers should implement secure debugging techniques that
prevent the leakage of sensitive data. This can be achieved by employing code obfuscation techniques,
data encryption and using secure communication channels during debugging sessions.

Another aspect of secure debugging is minimizing the attack surface. Debugging interfaces and tools can
become entry points for attackers if left unsecured. It is important to limit access to these interfaces and
ensure that only authorized personnel can debug the system. Implementing secure access controls, such
as password protection or two-factor authentication, can significantly reduce the risk of unauthorized ac-
cess.

Furthermore, it is essential to consider the security implications of remote debugging. Remote debugging
allows developers to debug systems located in different physical locations, but it also introduces additional
security challenges. To ensure secure remote debugging, developers, and more important IP professionals,
should setup and use secure communication protocols, employ encryption, and implement strong authenti-
cation mechanisms to prevent unauthorized access to the embedded system.

Additionally, secure debugging techniques should include the ability to log and monitor debugging activi-
ties. By logging debugging sessions, security supervisors can track and identify any suspicious or malicious
activities. This information can be used to investigate potential security breaches and improve the overall
security of the embedded system.

7

5. Protecting data in embedded
systems

5.1 Encryption and cryptography in embedded systems
With the rapid growth of Internet of Things (IoT) devices, systems are exponentially vulnerable to various
cyber threats, making encryption and cryptography vital components in ensuring the security of embedded
systems.

Encryption is the process of converting data into a form that is unintelligible to unauthorized individuals.
It acts as a protective shield, preventing sensitive information from falling into the wrong hands. Cryptog-
raphy, on the other hand, involves the techniques used to achieve encryption. It encompasses algorithms,
protocols and key management systems that enable secure communication and data protection. Data
encryption and data storing by default are computational intensive processes. Embedded systems, by their
nature, often have limited resources in terms of memory and power. Therefore, implementing encryption
and cryptography in such systems requires careful consideration and optimization.

5.2 Secure data storage devices
Most embedded devices use on-board memory chips to store data, commonly referred to as raw memory
or flash. Data stored on these devices can be retrieved by malicious software or physical access to the
chip. One way of reducing the risk of unwanted data recovery is the use of a secure data device.

Secure EEPROM
One type of device widely used in embedded systems is a secure EEPROM (Electrically Erasable Program-
mable Read-Only Memory). It is a type of non-volatile memory that offers enhanced security features to
protect the data stored within it. Since it is non-volatile memory, an EEPROM is commonly used in embed-
ded systems for storing critical data that needs to be retained even when the power is turned off, such as
encryption keys, configuration settings, and other sensitive information.

Secure	flash	memory
Secure flash memory refers to a type of non-volatile memory that incorporates advanced security features
to protect the data stored within it. Flash memory is commonly used in embedded systems for storing firm-
ware, operating systems, and application data. Secure flash memory enhances the security of stored data
by implementing various security mechanisms, similar to secure EEPROM but tailored specifically for flash
memory technology.

These days, the memory devices used in embedded systems for the majority consists out of banks of NOR,
NAND or eMMC flash chips. These chips may, inherently offer some type of data protection or are assisted
by special memory controllers with integrated security mechanisms. Usually this comes at an extra cost
that can be significant in relation to the overall component pricing.

Secure data access
Access to flash memory is controlled by flash drivers. These drivers manage the physical interface of the
flash component, and manage wear levelling, bad block inventory and write amplification. When using a
secure memory device, It is important to also consider the type of flash driver that utilizes the security fea-
tures of the memory device.

A second layer of data security of a flash device can be achieved through the filesystem. The filesystem
defines the logical storage of the data on the flash device so that the data can be accessed by the embed-
ded application, or, when required, by external users or applications. Most file systems organize the data
based on a standard simply because of compatibility and exchangeability. Therefore, by default, they are
not secure unless special considerations such as data encryption have been implemented.

There are however embedded file systems with inherent proprietary formats and encryption already imple-
mented in their driver. Using such type of transactional file systems can eliminate the use of special encryp-
tion algorithms on top of a logical file system driver.

8

5.3 Secure key management
One critical aspect of securing embedded systems is the management
of cryptographic keys. Cryptographic keys are essential for securing
sensitive data, protecting communication channels, and ensuring the in-
tegrity of software and firmware. If these keys fall into the wrong hands
or are compromised, the entire system's security can be compromised.

Effective key management involves various practices and protocols
designed to securely generate, store, distribute, and dispose of cryp-
tographic keys. It requires a comprehensive understanding of cryp-
tographic algorithms, key lengths, and secure storage mechanisms. It
also requires a well-defined process for key distribution and revocation.

9

6. Securing communication
interfaces

Communication interfaces serve as the bridge between embedded systems and external devices, networks,
or other systems. They enable the exchange of data, commands, and control signals, making them attrac-
tive targets for malicious actors seeking to exploit vulnerabilities and gain unauthorized access

6.1 Securing wired communication interfaces
Securing wired communication starts at the conceptual design and should be incorporated from the hard-
ware design through to the firmware and application development, by implementing:

Secure Design Principles
Incorporating security into the design of wired interfaces from the initial stages of product development.
This includes secure coding practices, threat modelling, and vulnerability assessments.

Physical Security Measures
Considering physical security aspects, such as tamper-proof connectors, secure enclosures, and protec-
tions against side-channel attacks.

Interface Authentication
Implementing robust authentication mechanisms to ensure that only authorized devices can access the
system. This includes techniques such as secure key exchange protocols, digital certificates, and secure
bootstrapping processes.

Secure Protocols
Choosing and implementing secure communication protocols, such as Transport Layer Security (TLS)
1.2 or the newer version 1.3 or Secure Shell (SSH) version 2, to establish secure connections and prevent
eavesdropping or tampering.

Data Encryption
Utilizing strong encryption algorithms and protocols to protect data transmitted through wired interfaces.
This ensures that even if an attacker gains access to the communication channel, they cannot decipher the
information without the corresponding decryption key.

Regular Updates and Patching
Establishing a process for timely updates and patching of the embedded system, including the firmware
and software of wired interfaces, to address any discovered vulnerabilities.

10

6.2 Securing wireless communication interfaces
Wireless communication interfaces, such as Bluetooth, Wi-Fi, and cellular networks, provide convenient and
efficient ways to transfer data wirelessly. However, they are susceptible to a range of security risks, includ-
ing eavesdropping, unauthorized access, and data tampering. To safeguard the integrity and confidentiality
of wireless communication, several key practices should be followed.

Firstly, one must implement strong authentication mechanisms. Utilizing secure protocols like WPA2-Enter-
prise for Wi-Fi or mutual authentication for Bluetooth can prevent unauthorized devices from gaining ac-
cess to the system. Additionally, enforcing the use of strong passwords and periodically changing them can
enhance the overall security posture.

Encryption plays a vital role in securing wireless communication interfaces. Utilizing protocols like SSL/TLS
or AES-256 can ensure that data transmitted over the wireless channel remains confidential and protected
from interception. It is essential to use encryption algorithms with strong cryptographic keys and regularly
update them to mitigate the risk of key compromise.

Firmware and software updates are a necessity for maintaining the security of wireless communication
interfaces. Regularly patching known vulnerabilities and implementing security updates address potential
weaknesses and keep the system protected from emerging threats.

To enhance the overall security posture, isolating wireless communication interfaces from critical system
components is recommended. Employing techniques like hardware-based isolation or virtualization can
minimize the impact of a potential breach on the entire embedded system.

Lastly, continuous monitoring and logging of wireless communication interfaces can provide valuable
insights into potential security incidents. Implementing intrusion detection systems and analysing network
traffic can help in identifying and mitigating potential threats in real-time.

By following these best practices, development teams can significantly enhance the security of embed-
ded systems’ wireless communication interfaces. However, it is important to remember that security is an
ongoing process, and staying vigilant against new vulnerabilities and emerging threats is crucial. Regular
security assessments and penetration testing can help identify any weaknesses and ensure that the system
remains secure throughout its lifecycle.

11

Testing and validation are essential steps in the implementation process. Thoroughly testing the secure
protocol implementation helps identify any performance issues, vulnerabilities or weaknesses that could be
exploited by attackers. Techniques such as penetration testing, fuzzing, and code review should be em-
ployed to uncover potential security flaws. Furthermore, conducting a comprehensive security assessment
to validate the effectiveness of the implemented protocol is a non-negotiable requirement.

Continued vigilance is necessary even after the secure protocol has been successfully implemented. Reg-
ular updates and patches should be applied to address any vulnerabilities discovered in the protocol or its
dependencies. Ongoing monitoring and analysis of network traffic can help detect any suspicious activity or
potential security breaches.

Implementing secure protocols is a complex task that requires expertise in both security and embedded
systems development. By following best practices and staying informed about the latest threats and secu-
rity advancements, development teams can ensure the robustness and resilience of their embedded sys-
tems, providing peace of mind to both end-users and businesses relying on their products.

6.3 Implementing secure protocols
With the proliferation of Internet of Things (IoT) devices, ensuring the privacy and integrity of data transmit-
ted over networks has never been more important. The implementation of secure protocols is a key compo-
nent in securing embedded systems.

Secure protocols play a vital role in protecting sensitive information from unauthorized access and poten-
tial attacks. They provide encryption, authentication, and integrity mechanisms to ensure the confidentiality
and trustworthiness of data exchanged between devices. Implementing secure protocols requires a com-
prehensive understanding of the underlying technologies and careful consideration of the specific require-
ments of the embedded system being developed.

The first step in implementing secure protocols is to select the appropriate protocol for the specific use
case. Factors such as the nature of the data being transmitted, the network infrastructure, and the com-
putational resources available on the embedded system should be taken into account. Commonly used
secure protocols include Transport Layer Security (TLS), Secure Shell (SSH-2), Secure Socket Layer (SSL)
and Internet Protocol Security (IPsec).

Once the protocol is chosen, the next step is to integrate it into the embedded system. This involves config-
uring the protocol parameters, such as the encryption algorithms, key lengths, and certificate authorities. It
is a task in its own to ensure that the chosen parameters meet the desired level of security without sacrific-
ing performance. Additionally, proper key management practices should be followed to protect the confi-
dentiality and integrity of cryptographic keys.

12

7. Secure device provisioning and
manufacturing

7.1 Secure provisioning of embedded systems
Secure provisioning refers to the process of securely initializing and configuring an embedded system to
ensure its integrity and confidentiality throughout its lifecycle. It involves the secure installation of cryp-
tographic keys, certificates, and other essential security credentials, as well as the establishment of secure
boot processes and secure communication channels.

To achieve secure provisioning, teams must adopt a multi-layered approach. This begins with secure hard-
ware design, ensuring that the embedded system has built-in security features such as tamper-resistant
elements, secure storage, and secure boot firmware. These hardware mechanisms provide a solid founda-
tion for secure provisioning.

The next layer involves secure software development practices. This includes implementing secure coding
techniques, performing thorough security testing, and adhering to secure software development frame-
works. By addressing vulnerabilities and potential weaknesses at the software level, product development
teams can mitigate the risk of exploitation during the provisioning process.

Secure provisioning necessitates the use of secure protocols and encryption algorithms. The provisioning
process should employ secure communication channels, such as Transport Layer Security (TLS), to protect
the integrity and confidentiality of the provisioning data. Additionally, cryptographic algorithms should be
carefully selected to ensure the highest level of security.

Management of cryptographic keys and certificates during the provisioning process is also a key aspect.
Management practices, such as key generation, distribution, and storage, play a vital role in maintaining the
system’s security. Effective key management practices ensure that only authorized entities have access to
the necessary keys, minimizing the risk of unauthorized access or tampering.

7.2 Supply chain security considerations
The supply chain, encompassing all the processes involved in getting a product from its conception to the
end-user, plays a center role in the overall security of embedded systems.

One of the primary concerns is the authenticity and integrity of the components and software used in
the embedded systems. It is essential to establish trust in the supply chain to prevent the introduction of
counterfeit or tampered components. This can be achieved by working with trusted suppliers, implementing
strong validation processes, and regularly auditing the supply chain to identify any potential vulnerabilities.

Another aspect to consider is the potential for supply chain attacks. Adversaries may exploit vulnerabilities
at any stage of the supply chain to compromise the security of embedded systems. These attacks can
range from malicious software or hardware insertion to unauthorized modifications during manufacturing
or distribution. Development teams must implement robust security measures, such as secure boot pro-
cesses and cryptographic controls, to detect and mitigate these threats effectively.

Additionally, securing the supply chain extends beyond the physical components and software. It also
involves protecting the intellectual property associated with the embedded systems. Companies should
establish strict confidentiality agreements with suppliers and implement measures to safeguard sensitive
information throughout the supply chain.

13

8. Secure system deployment
8.1	Secure	system	configuration	
Secure system configuration refers to the already discussed process of setting up an embedded system
with the appropriate security measures to protect it from potential threats. To recollect it involves imple-
menting strong access controls, encryption protocols, and authentication mechanisms. By ensuring that
only authorized users can access the system and that data is encrypted and protected during transmission,
the risk of unauthorized access and data leakage can be significantly mitigated.

8.2 Deployment
The deployment process is another important step in securing an embedded system. This involves the
proper installation and configuration of the system in its intended environment. Product development
teams must ensure that the system is installed following security best practices, such as disabling unnec-
essary services and ports, configuring firewalls, and implementing intrusion detection systems. Regular
software updates and patches should be applied to address any known vulnerabilities and keep the system
up to date with the latest security enhancements.

To facilitate secure system deployment, implementing secure remote management capabilities must also
be considered. This enables administrators to monitor and manage the system remotely, reducing the need
for physical access. However, it is essential to secure these remote management interfaces with robust
authentication mechanisms and encryption protocols to prevent unauthorized access and tampering.

Regular updates help to patch vulnerabilities, fix bugs, and add new features to the system. However, these
updates need to be conducted with utmost care to avoid introducing new vulnerabilities or disrupting sys-
tem functionality.

One of the key considerations in system updates is the verification of the authenticity and integrity of the
update package. Digital signatures can be employed to ensure that the updates come from trusted sources
and have not been tampered with during transit. Additionally, secure boot mechanisms can be implemented
to verify the integrity of the system's software during the boot process, preventing the execution of unautho-
rized or malicious code.

Another important element is establishing secure communication channels for system updates. Encrypt-
ed communication protocols, such as Transport Layer Security (TLS), can protect the confidentiality and
integrity of data exchanged during the update process. The use of secure channels helps prevent attackers
from intercepting or modifying the update package, ensuring that only authorized updates are installed on
the system.

Maintenance of embedded systems is equally important in ensuring their long-term security. Regular main-
tenance activities, such as monitoring system health, applying patches, and updating security configura-
tions, help to keep the system resilient against evolving threats.

Showing and conducting proper product maintenance will be one of the regulatory requirements for new
products deployed starting end of 2025 as demanded by the EU Cyber Resilience Act. Embedded devices
and systems will need a level of certification depending on the importance of the product in the electronic
infrastructure. One of the key elements is product security maintainability.

8.3 Secure system updates and maintenance

14

9. Security testing and evaluation
9.1 Types of security testing for embedded systems
Security testing ensures the robustness and resilience of embedded systems against potential threats and
vulnerabilities. As embedded systems become more prevalent in various industries, it is imperative for de-
velopment teams to be well-versed in the different types of security testing methodologies available.

An overview of the key types of security testing for embedded systems:

Penetration Testing
Penetration testing, also known as ethical hacking, involves simulating real-world attacks on an embedded
system to identify vulnerabilities and assess its overall security posture. By actively probing for system
weaknesses, development teams can gain valuable insights into potential security loopholes and address
them before malicious actors exploit them. Penetration testing can encompass network, application, and
physical security assessments.

Vulnerability Assessment
Vulnerability assessment focuses on identifying and classifying system vulnerabilities, providing product
development teams with a comprehensive understanding of potential weaknesses. This assessment typ-
ically involves scanning the embedded system for known vulnerabilities, analysing software and firmware
components, and conducting penetration testing to validate any identified vulnerabilities.

Code Review
Code review is an essential security testing method that involves scrutinizing the source code of an embed-
ded system for potential security vulnerabilities. By examining the code for coding errors, insecure coding
practices, and architectural flaws, developers can identify and rectify security weaknesses early in the
development lifecycle.

Fuzz Testing
Fuzz testing, or fuzzing, is a technique that involves bombarding an embedded system with a large volume
of random or malformed inputs to uncover software flaws and potential security vulnerabilities. By subject-
ing the system to unexpected or invalid inputs, you can identify and address vulnerabilities related to mem-
ory corruption, buffer overflows, and other software defects.

Protocol Testing
Embedded systems often communicate through various protocols, such as Bluetooth, Wi-Fi, or Zigbee. Pro-
tocol testing involves analysing the security of these communication protocols to ensure they are resistant
to attacks, such as eavesdropping, replay attacks, or man-in-the-middle attacks. By thoroughly testing the
security of these protocols, risks can be mitigated associated with unauthorized access or data manipula-
tion.

Compliance Testing
Compliance testing ensures that an embedded system adheres to relevant security standards, regulations,
and best practices. This type of testing verifies if the system meets specific security requirements, such as
cryptography, access controls, or secure software development practices. By conducting compliance test-
ing, you can ensure that embedded systems meet industry-recognized security standards and guidelines.

15

9.2 Penetration testing and vulnerability assessments
In the realm of securing embedded systems, one aspect that cannot be overlooked is conducting regular
penetration testing and vulnerability assessments. These two practices are instrumental in identifying po-
tential security vulnerabilities and weaknesses in embedded systems, allowing to address them proactively
and enhance the overall security posture.

Penetration testing is a simulated attack on an embedded system to evaluate its resilience against re-
al-world threats. It involves a systematic and controlled approach to identify vulnerabilities that could
potentially be exploited by malicious actors. By conducting penetration testing, teams can gain insights into
the security flaws present in their embedded systems and take necessary steps to rectify them.

Vulnerability assessments, on the other hand, focus on identifying weaknesses and flaws in the design,
code, or configuration of embedded systems. These assessments provide a holistic view of the security
posture of the system, including potential vulnerabilities that could be exploited.

Both penetration testing and vulnerability assessments should be integrated into the product development
lifecycle from the early stages. It is imperative to adopt a proactive approach to security and embed these
practices within the development process itself. By doing so, teams can identify and address security is-
sues early on, reducing the likelihood of vulnerabilities being exploited in the future.

Both techniques require experienced and skilled security professionals or external service providers. These
experts should not be part of the actual programming team or at least not directly checking for vulnerabil-
ities in their own coding segments. This warrants that they are oblivious to vulnerabilities that may not be
apparent to the development team. By leveraging their expertise, development teams can gain a deeper
understanding of potential vulnerabilities and implement effective security measures to mitigate them.

9.3	Security	evaluation	standards	and	certifications
Security evaluation standards serve as guidelines and benchmarks to assess the security posture of em-
bedded systems. These standards outline the criteria that must be met to ensure the confidentiality, integ-
rity, and availability of information and resources. By adhering to these standards, you can mitigate risks,
protect sensitive data, and enhance the overall security of embedded systems.

One widely recognized security evaluation standard is the Common Criteria (CC). Developed by an interna-
tional consortium, the CC provides a framework for evaluating the security of IT products. It defines a set
of security requirements and levels, allowing organizations to assess the level of assurance provided by a
particular system. Obtaining Common Criteria certification demonstrates a commitment to security and
provides customers with confidence in the product's security capabilities.

Another important security evaluation standard is the Federal Information Processing Standard (FIPS).
Developed by the National Institute of Standards and Technology (NIST) in the United States, FIPS outlines
security requirements for federal systems. Compliance with FIPS ensures that embedded systems meet
stringent security guidelines, making them suitable for use in government and high-security environments.
In Europe, the ENISA, the European Union Agency for Cybersecurity, is developing EU cybersecurity certifi-
cation which provides evidence of compliance to a given level of trust.

Additionally, organizations can obtain certifications such as ISO, which provides a comprehensive frame-
work for establishing, implementing, maintaining, and continually improving an information security man-
agement system. ISO certification demonstrates a commitment to best practices in information security
management and provides assurance to customers and stakeholders.
One prominent framework is the Open Web Application Security Project (OWASP). While originally focused
on web application security, OWASP has expanded its scope to cover embedded systems as well. OWASP
offers a comprehensive set of guidelines and best practices to help product development teams identify
and address security vulnerabilities in their embedded systems.

16

In addition to these frameworks, there are industry-specific standards that product development teams
should consider. For example, the automotive industry has developed the Automotive Security Best Prac-
tices (ASBP) to address the unique security challenges faced by connected vehicles. ASBP provides guid-
ance on securing various components of a vehicle's embedded systems, including infotainment systems,
telematics, and advanced driver-assistance systems (ADAS).

In conclusion, by adhering to industry standards and frameworks such as Common Criteria, OWASP, ASBP,
HL7, and IEC and ISO certifications, product development teams can ensure that their embedded systems
meet the necessary security requirements. These standards provide a comprehensive set of guidelines and
best practices to identify and address potential vulnerabilities, ultimately enhancing the overall security of
embedded systems.

17

10. Incident response and
security incident management

10.1 Establishing an incident response plan
An incident response plan serves as a roadmap to respond to and recover from security incidents. It out-
lines the necessary steps, roles, and responsibilities to address an incident promptly and effectively. The
first step in establishing an incident response plan is to identify potential security incidents that could occur
in your embedded systems. This involves conducting a comprehensive risk assessment and understanding
the potential vulnerabilities and threats specific to your products.

Once you have identified the potential security incidents, the next step is to define the roles and responsi-
bilities of your incident response team. This team should consist of individuals with expertise in security,
system administration, product development, and communication. Assigning clear roles and responsibili-
ties ensures a coordinated response to incidents and avoids confusion during critical moments.

The incident response plan should also include a well-defined incident escalation process. This process
outlines the criteria for escalating an incident to higher levels of management and ensuring that the appro-
priate stakeholders are informed in a timely manner. Effective communication is vital during security inci-
dents, both internally within the team and externally with customers and partners. Therefore, your incident
response plan should also cover communication protocols and guidelines for transparent and accurate
reporting.

Additionally, your plan should address the technical aspects of incident response. This includes procedures
for collecting and preserving evidence, analysing the incident, and implementing necessary remediation
measures. It is also important to establish a system for monitoring and documenting incidents, which can
help identify patterns and improve future incident response efforts.

By establishing a comprehensive incident response plan, the product development team can enhance the
security of embedded systems, mitigate potential risks, and effectively respond to security incidents. This
proactive approach will not only protect your products and customers but also build trust and confidence in
your organization’s ability to handle security incidents professionally.

First and foremost, one must establish a comprehensive incident detection strategy. This strategy should
include a combination of proactive and reactive measures to identify potential security incidents. Proactive
measures can include regular vulnerability assessments and penetration testing, while reactive measures
involve monitoring system logs, network traffic, and user behaviour for any signs of compromise.
In the context of securing embedded systems, incident detection and response should focus on the unique
challenges posed by these systems.
Embedded systems often have limited resources, making it necessary to prioritize the monitoring of critical
components and functions. Additionally, the distributed nature of embedded systems requires the imple-
mentation of centralized monitoring and response mechanisms to ensure thorough coverage.

Furthermore, incident detection and response should not be limited to the software aspect of embedded
systems. Hardware vulnerabilities and physical attacks can also pose significant security risks. Therefore,
it is important to incorporate mechanisms for detecting and responding to physical security incidents, such
as tampering or unauthorized access.

To enhance incident response capabilities, product development teams should also consider integrating
automated incident detection and response systems. These systems can leverage machine learning algo-
rithms and artificial intelligence to detect and respond to security incidents in real-time, thereby reducing re-
sponse times and minimizing the impact of incidents. Developing, deploying and maintaining such solution
within an organization as required by the EU Cyber Resilience Act implies the establishment of a special
product development team by itself. There are however readily available tools and infrastructure monitoring
solutions available today which can be tailored to the requirements of any embedded or IoT system.

10.2 Detecting and responding to security incidents

18

11. Best practices in embedded
systems security

As a summary of what we discussed in the previous chapters, these are the best practices in managing
security in embedded systems.
11.1 Lessons learned and continuous improvement
Lesson 1: Embrace a Security-First Mindset
One of the most important lessons learned is the need to adopt a security-first mindset from the outset of
the product development process. This means considering security as an integral part of every decision,
from hardware design to software development. By doing so, product development teams can mitigate
potential vulnerabilities and ensure that security is not an afterthought.

Lesson 2: Stay Updated with Industry Best Practices
The field of securing embedded systems is constantly evolving, with new threats and vulnerabilities emerg-
ing regularly. To stay ahead of these challenges, product development teams must remain updated with
the latest industry best practices. This includes staying informed about current security standards, attend-
ing conferences and workshops, and actively participating in security-focused communities. By doing so,
teams can leverage collective knowledge and continuously improve their security practices.

Lesson 3: Conduct Regular Security Assessments
Embedding security into the development process is not a one-time effort. It requires regular security
assessments and testing throughout the product lifecycle. By conducting frequent security assessments,
teams can identify and address vulnerabilities before they can be exploited. This proactive approach helps
in minimizing risks and improving the overall security posture of embedded systems.

Lesson 4: Foster Collaboration and Knowledge Sharing
Securing embedded systems is a complex task that requires expertise from multiple disciplines. It is crucial
for product development teams to foster collaboration and knowledge sharing among team members. This
includes encouraging cross-functional communication, conducting security training programs, and creating
a culture of continuous learning. By sharing experiences and insights, teams can collectively learn from
past mistakes and continuously improve their security practices.

Lesson 5: Engage with the Security Community
The security community is a valuable resource for product development teams. Engaging with this commu-
nity can provide access to cutting-edge research, tools, and expertise. Collaborating with security research-
ers and experts can help in identifying potential vulnerabilities and gaining insights into emerging threats.
By actively participating in the security community, product development teams can enhance their under-
standing of securing embedded systems and drive continuous improvement.

19

11.2 Secure design principles and guidelines
1. Defence-in-Depth Approach
The first principle of secure design is adopting a defence-in-depth approach. This means implementing mul-
tiple layers of security controls to create a robust system that can withstand attacks. By combining various
security measures such as encryption, authentication, and intrusion detection, product development teams
can ensure that even if one layer is compromised, the system remains protected.

2. Secure Boot
Implementing secure boot mechanisms is essential to prevent unauthorized code execution during system
start-up. This involves verifying the integrity and authenticity of the boot firmware, operating system, and
other critical components before allowing them to run. Secure boot ensures that only trusted software is
executed, making it significantly harder for attackers to exploit vulnerabilities.

3. Least Privilege
Adhering to the principle of least privilege limits the potential impact of a security breach. Each component
of the embedded system should have only the necessary privileges required to perform its designated
functions. By minimizing the access rights of individual components, the attack surface is reduced, making
it harder for attackers to gain control over the system.

4. Input Validation
Proper input validation prevents common vulnerabilities such as buffer overflows and injection attacks. All
user inputs should be thoroughly validated and sanitized before being processed. This includes checking
the length, format, and content of inputs to ensure they adhere to the expected criteria. By implementing
strict input validation, product development teams can mitigate the risk of exploitation through malicious
input.

5. Secure Communication
Secure communication protocols, such as Transport Layer Security (TLS), should be employed to protect
sensitive data transmitted between embedded systems and external entities. Encryption and authentica-
tion mechanisms play a crucial role in ensuring the confidentiality and integrity of data in transit. It is also
important to regularly update and patch these protocols to address any emerging vulnerabilities.

6. Continuous Monitoring and Updates
Security is an ongoing process, and mechanisms should be established for continuous monitoring and up-
dating of embedded systems. Regular vulnerability assessments, threat modelling, and penetration testing
should be conducted to identify and address any potential weaknesses. Additionally, timely updates and
patches should be deployed to address known vulnerabilities and protect against emerging threats.

20

12. Future trends and emerging
technologies

12.1 The impact of IoT on embedded systems security
Embedded systems are the foundation of IoT, powering the interconnected devices that collect and trans-
mit data. These systems are more and more responsible for executing critical functions and ensuring the
smooth operation of vital infrastructure. As the number of embedded systems continues to skyrocket, so
does the vulnerability to security threats.

One of the primary concerns with IoT is the vast amount of sensitive information being transmitted be-
tween devices and networks. From personal data to industrial secrets, the security of this data is para-
mount. Embedded systems must therefore be designed with robust security measures to protect against
unauthorized access, data breaches, and cyber-attacks.

The interconnected nature of IoT devices also increases the attack surface for potential threats. A compro-
mise in one device can potentially lead to the infiltration of an entire network, putting all connected devices
and their data at risk.

Another challenge introduced by IoT is the longevity of embedded systems. Unlike traditional computing
devices, IoT devices are often deployed for extended periods without regular updates or maintenance. This
poses a unique security challenge as vulnerabilities can go unnoticed for extended periods, leaving devices
and networks exposed to potential attacks.

The sheer scale of IoT deployments makes it challenging to manage security across all devices effectively.
Adopting a holistic approach to security is a challenge. A shift left integrating secure practices from the
early stages of development is a must. From threat modelling to secure coding practices, every aspect of
the development process must consider security implications.

In recent years, the field of securing embedded systems has witnessed significant advancements in hard-
ware security modules (HSMs), leading to more robust and reliable security measures. One noteworthy ad-
vancement in HSMs is the integration of tamper-resistant and tamper-evident features. These features aim
to prevent physical attacks on the module, such as reverse engineering, tampering, or unauthorized access.
Tamper-resistant designs include measures like epoxy or resin coating, which make it difficult to access
the internal components without causing visible damage. Tamper-evident mechanisms, on the other hand,
provide alerts or destroy sensitive data when tampering is detected, ensuring the system's integrity.

Another key development is the expansion of cryptographic capabilities within HSMs. With the growing
importance of encryption in securing embedded systems, modern HSMs offer advanced cryptographic
algorithms and key management functionalities. These modules can generate, store, and securely manage
cryptographic keys, ensuring their confidentiality and protecting against unauthorized use. Additionally,
HSMs can offload cryptographic operations from the main processor, enhancing the system's performance
and reducing the risk of side-channel attacks.

Advancements in HSMs have also led to improved connectivity options. Traditional HSMs were often limit-
ed by their physical interfaces, making integration with embedded systems challenging. However, modern
HSMs now provide a range of connectivity options, including USB, Ethernet, and wireless interfaces. This
allows for easier integration into various product designs, enabling seamless communication and secure
data transfer between the embedded system and the HSM.

HSMs now offer better support for secure boot and firmware updates. Secure boot ensures that only trust-
ed software is executed on the embedded system, protecting against malware and unauthorized modifica-
tions. HSMs can securely store and verify the system's boot code and digital signatures, providing a robust
foundation for secure boot procedures. Additionally, HSMs can securely store firmware updates and ensure
their integrity during the update process, minimizing the risk of injecting malicious code or compromising
the system's security.

12.2 Advancements in hardware security modules

21

12.3	Artificial	intelligence	and	machine	learning	in	embedded	systems	security
In recent years, the field of embedded systems security has faced numerous challenges due to the rapid
advancement of technology and the increasing complexity of cyber threats. As a product development
team involved in securing embedded systems, it must stay ahead of these challenges and leverage the
latest tools and techniques to ensure the highest level of security for their products. One such tool that has
gained significant attention is Artificial Intelligence (AI) and Machine Learning (ML).

AI and ML have revolutionized various industries, and their potential in enhancing embedded systems
security cannot be overlooked. These technologies have the ability to analyse vast amounts of data, identify
patterns, and make intelligent decisions in real-time, making them ideal for detecting and preventing securi-
ty breaches in embedded systems.

One of the key areas where AI and ML can be applied is anomaly detection. Traditional security measures
often rely on predefined rules and signatures to identify threats, but these methods may fail to detect new
and evolving attacks. By utilizing AI and ML algorithms, embedded systems can learn from normal be-
haviour patterns and identify any deviations that may indicate a potential security breach. This proactive
approach enhances the system’s ability to detect and respond to emerging threats effectively.

AI and ML can also assist in the identification of zero-day vulnerabilities. These vulnerabilities are unknown
to the developers and represent a significant risk to embedded systems. By analysing data from various
sources, including system logs, network traffic, and user behaviour, AI and ML algorithms can identify po-
tential zero-day vulnerabilities and help in developing timely patches or mitigations.

Furthermore, AI and ML can be used to strengthen authentication and access control mechanisms in em-
bedded systems. By analysing user behaviour patterns and biometric data, AI algorithms can distinguish
between legitimate users and potential attackers attempting to gain unauthorized access. ML algorithms
can also adapt to changes in user behaviour and detect suspicious activities that may indicate a compro-
mised account or a security breach.

While AI and ML offer significant advantages in enhancing embedded systems security, there are also
challenges and limitations in its use. Issues such as data privacy, algorithm bias, and system performance
must be carefully considered and mitigated to ensure the successful integration of these technologies into
embedded systems.

22

13. Conclusion and Next Steps
In the rapidly evolving landscape of technology and interconnected devices, securing embedded systems
has become an imperative for product development teams. As we come to the end of this practical guide, it
is essential to reflect on the key learnings and outline the next steps for product development teams in their
journey towards securing embedded systems.

Throughout this book, we have explored the various challenges and vulnerabilities that embedded systems
can face, as well as the best practices and strategies to mitigate these risks. We have emphasized the
importance of adopting a proactive and holistic approach to security, considering both the hardware and
software aspects of embedded systems.

The foremost takeaway for product development teams is the need to prioritize security from the very be-
ginning of the development process. By integrating security considerations into the early stages of design
and architecture, teams can build a strong foundation for secure embedded systems. By careful consid-
eration of security and risks throughout your entire SDLC, every team can create a futureproof and safe
product.

Looking ahead, teams need to stay ahead of the latest advancements and trends in securing embedded
systems. As technology evolves, new vulnerabilities and attack vectors emerge. Software tooling and spe-
cific hardware can help you stay ahead of the competition.

Are you ready to discover what Logic technology can do for you?

Helping you make the right decision, every time
We’re on a mission to accelerate the development of better, more secure and more reliable products. We
do this by enabling your company with the right tools and knowledge to help you create great embedded
products.

Need a reliable supplier or solution?
We’ve evaluated hundreds of tools and solutions over the last 30 years. Our close relationship with all of
our partners ensures you receive top notch service.

Try these security tools
• Boundary Scan Testing
• Code Coverage
• Coding Standards
• Composition Analysis
• Database Management Systems
• File Systems
• IDEs
• Protocol Stacks
• Traceability	&	Certification

23

